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A~tract--Resuspension, under the action of shear, of an initially settled bed of particles has been observed 
not only in turbulent flows but also under laminar conditions. By applying a model developed previously, 
we investigate theoretically such a resuspension in a fully-developed Hagen-Poiseuille channel flow and 
in a corresponding gravity-driven film flow along an inclined plate. It is found that, in the former case, 
the region occupied by the suspension cannot extend beyond the plane of zero shear stress, while for the 
film flow, a critical value for the feed concentration is predicted beyond which steady-state operation is 
no longer possible. Experimental observations in a channel flow are found to be in good agreement with 
the theory. 
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1. I N T R O D U C T I O N  

As mentioned by Leighton & Acrivos (1986), the conditions under which a settled layer of 
negatively buoyant particles will resuspend are not well-understood and are usually associated with 
turbulence at high Reynolds numbers (Thomas 1961). Gadala-Maria (1979) appears to have been 
the first to notice, however, that such a resuspension can also occur at low Reynolds numbers, for 
which inertial effects are insignificant and the flow is laminar. Leighton & Acrivos (1986) designated 
this phenomenon "viscous resuspension" and demonstrated that the equilibrium height that is 
achieved within a Couette flow can be predicted by a balance of the downward flux of particles 
due to settling and a Fickian diffusive flux due to the existence of a concentration gradient. These 
authors neglected Brownian motion and attributed the diffusive flux to the existence of a 
shear-induced random motion of the particles characterized by a diffusion coefficient proportional 
to the applied shear rate and to the square of the particle radius (Leighton & Acrivos 1987a). 
For a plane Couette flow, where the shear stress is constant, Leighton & Acrivos (1986) showed 
that the change in the interfacial height of the resuspended sediment is proportional to the 
applied shear stress, and were able to verify their prediction experimentally over a wide range of 
parameters. Although, their results apply only as long as a sediment layer remains at the bottom 
of the channel where the particle concentration equals its initial maximum value, this restriction 
can easily be relaxed. In such a case, however, the height of the suspension layer is no longer linear 
in the shear rate. 

In the present paper we investigate theoretically viscous resuspension for two other shear 
flows, specifically a two-dimensional (2-D) Hagen-Poiseuille channel flow and a gravity-driven film 
flow along an inclined plate. In both cases the shear stress is no longer constant and for the 
Hagen-Poiseuille flow there exists a plane within the channel where it is zero. This fact places 
an upper bound on the height of the resuspended layer. In addition, for the gravity-driven film 
flow, a critical value is predicted for the volume concentration of solids in the well-mixed feed 
suspension, above which the particles settle out and form a sediment layer along the plate that 
continues to grow as a function of time. Finally, we investigated this phenomenon experimentally 
in a channel flow and found good agreement between the experimental results and the theoretical 
predictions. 
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2. BASICS 

Following the analysis by Leighton & Acrivos (1986), we consider a suspension of nega- 
tively buoyant spheres of uniform size in a 2-D duct or in a film flow, as depicted in figures la 
and lb. 

The symbol h0 denotes the height of the settled bed with maximum particle volume concentration 
~0, i.e. the height of the sediment which would be reached if the flow were to be suddenly turned 
off, h~ is the position of the top of the resuspended layer in the presence of a laminar shear flow 
with velocity U(z) and hc denotes the height of the remaining sediment layer at the bottom. The 
viscosity is denoted by/a and the density by p. The subscript m refers to the particle-fluid mixture 
within the resuspended layer where both the viscosity ~m and the density Pm are functions of the 
particle volume concentration q~(z). Moreover, where necessary within the text, the subscripts 1 
and 2 will distinguish between the clear fluid and particle properties, respectively. Also, the symbol 
g refers to the gravitational constant and 0t is the angle of inclination. Finally, the total space of 
the 2-D duct is given by 2B (figure la), while 6 refers to the thickness of the downward flowing 
film according to figure lb. 

The downward flux of particles with radius a in the direction of gravity is given by 

Ns = ~q~ a2g(P2 - Pt) f(dp), [1] 

i.e. Stokes' law multiplied by the hindrance function f(~b), which takes into account the presence 
of other particles within the suspension. This function, which is strongly dependent on the 
concentration q~, has not been measured to date in the presence of shear. Thus, for simplicity we 
shall take it as being equal to the corresponding function as obtained in vertical settling 
experiments, which, for our purpose, can be represented approximately by 

1 - ~  
f = , [2] 

#, 

where /a r is the dimensionless effective viscosity of the suspension given by Leighton (1985) as 2 ,  
/a___m_m = 1 + ~ [3] 

#r= Pl 
, t o  

Equation [2] can also be obtained by assuming that the spheres settle with their Stokes velocity 
in a fluid having the density and viscosity of the suspension. Of course the precise form chosen 

(a) 

(b) 

Figure 1. (a) Schematic of a 2-D Hagen-Poiseuille channel flow indicating the notation. (b) Plane film 
flow. 
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for f ( ¢ )  has little bearing on the principal features of the solution as long as f ( ¢ )  decreases 
monotonically with increasing particle concentration. 

In the presence of a concentration gradient, the Fickian diffusive flux 

d0 
Ne = - D  d-~-' [4] 

(with D being the shear-induced diffusion coefficient) balances the flux due to sedimentation, and 
hence we obtain 

~dpfa2g(P2 - P,) 2 * dq5 l~, b ~,(z)a D ~ = 0, [5] 

where/5 denotes the dimensionless diffusion coefficient 

D 
/5  ~ a  ~ ,  

with ~) being the absolute value of the local shear rate 

~(z) 
- -  ~ m ( Z  ) [6] 

and z(z) the shear stress. An approximate estimate for the diffusion coefficient is 

/9 "~]¢z( 1 +z~ ,, [7] 

which was found by Leighton (1985) to represent his data. We note parenthetically that the 
proportionality between D and ~, which applies only for 2-D unidirectional flows, has not been 
extended to date to more complicated situations. Also, for the sake of simplicity, we have neglected 
the particle flux due to gradients in the shear stress (Leighton & Acrivos 1987b) which would have 
added a second term to the r.h.s, of [4]. 

Equations [2], [3] and [5]-[7], plus the equations of motion, consist of a set of equations which 
together with the appropriate boundary conditions describe the flow field. In the following two 
sections we shall consider separately the resuspension problem for a Hagen-Poiseuille channel flow 
and for a plane film flow along an inclined plate. 

3. HAGEN-POISEUILLE CHANNEL FLOW 

Consider the fully-developed laminar stratified flow of an initially, well-mixed suspension, having 
a particle volume fraction ¢,, flowing along a 2-D channel, as shown in figure l a. 

We begin our analysis by introducing dimensionless variables using 2B and Q/2B as the 
characteristic length and velocity, respectively, where Q is the volume flux of clear liquid per unit 
depth. The pressure is scaled with/~, Q/4B 2. Then, on integrating the reduced equations of motion 
for a fully-developed flow subject to the no-slip boundary conditions at the wall and the 
requirement that the velocity and shear stress be continuous at the interface, we obtain for the 
velocity within the clear fluid, 

u ,  = g [ ½ ( l  - z 2) - C ( l  - z ) ] ;  [8] 

and for the velocity within the resuspended layer, 

U m = K [ ; ~ ( C - 3 ) d ~ ] ;  [9] 

where 

l h~ f"  z dz 

C = ~ -  -~- + '];" Ur(Z) [10] 

~;i ' dz 
1 - -  ht + # r ( z )  
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In the above, K is the dimensionless pressure-drop coefficient, defined by 

A p  = Pin - -  Pout = KL, 

where L is the dimensionless length of the duct. Also, 2 = he if he >/0, while 2 = 0 if the whole 
sediment has resuspended. 

The remaining two equations which are needed to determine K and h t a r e  the global mass balance 
of the clear fluid for a given flow rate, 

U,(z)dz + [1 - 4~(z)lg~.(z)dz = 1, [ll] 
t 

and the solids material balance, 

4,, I~. ~' 
1 - ~b, = q~Um dz, [12] 

where, as mentioned above, 4~s refers to the particle volume fraction in the well-mixed suspension 
entering the channel. 

Finally, we have for the dimensionless shear rate within the resuspended layer 

d U m  K 
,; = - ( c  -~ ) ,  

dz /~r 

which when substituted into [5] and together with [2] leads to 

The symbol 

is a modified Shields number, 

¢ ( 1  - 4 0  = ~ c K ( z  - C)D de# 
d z "  

[131 

[14] 

C - z  
~b z = In ~ ---ht as z-~.h,. [17] 

which when substituted in [14] yields, on integration, 

and 

In general, when x K ~  oo, the concentration reaches a constant value q~* within the resuspended 
layer and h t = C. Consequently, in view of [10] and the fact that he = 0, implying 2 = 0, and after 
some algebraic manipulations involving [11] and [12], we obtain that 

1 ~b* _ 1 1 -I- [18] 

3 
K = [191 

( l -  

3 ~1Q [15b] 
@ = 2 aB2g(pz - Pt ) 

(Leighton & Acrivos 1986), which gives a measure of the ratio of viscous forces to those of gravity 
in the bulk flow. Note that h t ~< C, owing to the fact that the shear-induced diffusion coefficient 
vanishes along the plane of zero shear stress z = C. 

In the neighborhood of the interface (or, for sufficiently large values of xK, throughout the 
whole resuspended layer if the height of the settled bed is small), the limiting case ¢ ,~ 1 applies. 
Thus, the diffusion coefficient becomes simply 

/) = ~4~ 2, [161 

3 a  
x = ~ [15a] 
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We remark parenthetically that, as x K  = ~oo ,  the slope of  the base velocity profile vanishes on 
the interface since C = h t . This has important implications regarding the linear stability analysis 
of  such a flow because the interfacial mode is neutrally stable under these conditions (Yiantsios 
& Higgins 1988). 

We also indicate for further use, that h0, the height of  the sediment which would be reached if 
the flow were to be suddently turned off, can be determined once the concentration profile has been 
found by making use of  the global conservation of  particles equation, 

f; ~' ~b dz = ~b0(h0 - he). [20] 

As can be verified by direct substitution, the system of  equations [8]-[12] and [14] can be simplified 
via the transformations 

M 
K = - - ,  ht = l - N x  1/3, h c =  l - P x  1/3, ho = l - R x  I/3, C = 1 - S 1 ¢  I/3, z = T •  I/3, [21] 

K 

where the various coefficients M, N etc. are functions only of  q~s. This transformation applies, 
of  course, only if r.t/3<~ l IP .  Thus, as was the case in Couette flow (Leighton & Acrivos 
1986), there exists a simple functional relation between Ah = ht - hc and x as long as a sediment 
layer is present at the bottom of  the channel, except that here, Ah is linear in r ~/3 rather than 
in x. 

Off hand, it might seem that the system of equations [8]-[12] and [14] is so simple that 
any standard numerical technique could have been employed for the purpose of obtaining a 
solution. Unfortunately, [14] is stiff in that, as can be seen in figure 2, q~ changes very rapidly with 
position near the suspension-clear fluid interface, but is otherwise nearly constant over the 
rest of  the suspension layer. Consequently, a way had to be devised in order to circumvent this 
difficulty. 

First of  all, since [14] is separable, it can be integrated to yield 

~f t 3 In(1 + y ) =  F (q~) -  (1 + I eSSt)dt, [22] 

htm z 

Y = - C - h t '  
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Figure 2. Particle concentration profiles in a channel flow for q~, = 0.3 and r = 1.9 × 10 -4, 10 -2 and 0.72. 
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where use has been made of the expression f o r / )  given in [7]. Then, if he > 0, we have from [22] 
that 

C - hi = exp x , 

where, as before, 4~0 equals the maximum particle concentration. On the other hand, if h~ = 0, 

C = exp[.XKF(4~).-] [23a] 
C hi 1 3  J 

where q~c is the unknown particle concentration at z = 0. Thus, [23] or [23a] gives one relation 
among the three unknowns, ht, he, and C (or hi, C and ~bc), in terms of xK. 

Next, [10] is recast into 

1 O2 re: y dy 
- 2 -  Jo ~ d - - ~  dob 

- = , [24] C ht 0 f ~ l d Y d q ~  
l - h i  l + O j o  #rd~b 

where q~ equals either ~bo (if hc > 0) or ~b~, while [11], [12] and [20] become, respectively: 

fo ~ 1 1-C(13 2 -h t )Z-~ht (3-h~)+C-ht )3  (1 -~b)A(tk,~)dth = ~ . ,  [25] 

f: d?-----2--~ = K(C - ht) 3 ~bA (~b, 6)d~b [261 
1- ,~  

and 

with 

dy 
(C - h,) / d4) = 4~o(ho - he), [27] 

do 

dy ; f  l + y dy dc~ '. A(~,$)=_-~ ~,(~') d~" 

Thus, given x and Ss, it is a simple matter to determine, from [23]-[27], the unknowns, C, K, h,, 
ho and h~ (or $c). 

In all our calculations ~b0 was set equal to 0.58, the value inferred from Leighton's (1985) 
experiment. 

Shown in figure 2 are some typical concentration profiles which clearly illustrate that, as noted 
earlier, ~b changes very rapidly near the suspension--clear fluid interface, and hardly at all below 
it. Of particular interest from the practical point of view, however, is figure 3 which shows the 
pressure-drop coefficient K, relative to its value for a pure fluid, plotted vs ~, with ~bs as a parameter. 
It is seen that the two asymptotic expressions for K noted above when X I/3 ~ 1/P or r - - . ~ ,  
respectively (cf. [21] and [18, 19]) suffice to describe the functional dependence of K over practically 
the whole range of x. 

A quantity that can readily be measured experimentally is h0, the height of the settled 
sediment following a shut down of the flow, which is shown in figure 4 plotted as a function of 
x and Ss. 

4. PLANE FILM FLOW 

We next turn to the problem of determining the fully-developed flow of an initially well-mixed 
suspension down an inclined wall, as shown in figure lb. By referring all lengths to a film thickness 

=(  3Qv ~ ,/3, 
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Figure 3. Pressure drop coeflScient K/12 vs x for different values of 4~s. 

which is set up by a volume flux Q of clear liquid with kinematic viscosity v, and by non- 
dimensionalizing the shear stress with respect to gPl 6" sin ~ and the velocities by gv-1(6*)2sin ~, 
we immediately obtain, by applying a dimensionless force balance, that 

where 

~z ~t "Cm = (6 --Z) +E 4,dz, 

P2 - P~ 
E = - -  PI 

[28] 

and 6 is the dimensionless thickness of the whole film (figure lb). Then, on substituting [2] and 
[28] into [5], we obtain for the dimensionless flux balance: 

= O. [29] 4,(1 - 4,) + (1 + 4,c)dz + (6 - h,) E dz 

In addition, the dimensionless velocity within the resuspended layer is given by 

I z T 

Um= -m d:~, 0 ~< z ~< hi, [30] 
j 0  /~r 

MF 16/4.--B 
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Figure 4. Settled height ho vs x for different values of  ~, and comparison with experiments ( + ,  I-l, O , / x ,  
polystyrene beads; x ,  <>, glass beads). 
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and the velocity within the clear fluid above the resuspended layer becomes 

U, = ½ (h~ - z 2) - 6ht + 6z + ~ h'~m dz. [31] 
Jo~, 

Finally, the thickness of the film 6 follows from a global mass balance of the clear fluid, 

f: (1 - ~b)Um dz + U, dz = I ,  [32] 
t 

while a mass balance on the particles gives 

es = 3 •U m dz + e ~bf(~b)dz. [33] 

Clearly, the last term in [33] is negligible for all systems, which can be represented as effective 
continua and henceforth will be omitted. 

This system of equations describing resuspension in a film flow is very similar to that discussed 
earlier in connection with flow in a channel, and hence was solved in like fashion. All calculations 
to be reported below were performed for e = 1 and ¢0 = 0.58. 

Figure 5 depicts the quantity 6, i.e. the thickness of the film, as a function of the particle 
concentration ~bs in a well-mixed suspension upstream, for various values of the angle of 
inclination ~. 

It should be noted that, in contrast to the Hagen-Poiseuille case where the channel width is fixed 
and a pressure gradient to be determined as part of the solution is set up, a fully-developed laminar 
film flow can exist here only as long as ~b~ is below some critical value ¢* which depends only on 

and ¢. To see this, consider first the case ¢~ ~ 0  which implies that ~ is everywhere small. 
Consequently, the particle concentration along the plate z = 0 is lower than ~b 0 and a sediment layer 
will not exist. When the feed concentration is increased, however, the thickness of the film will 
increase because the increase in the effective viscosity will lower the strength of the shear flow which 
maintains the shear-induced particle diffusion. Although, in view of [7], this will be compensated 
at first by a corresponding increase in/9, a point will eventually be reached when a sediment layer 
will form on the surface of the plate. This layer will then continue to grow as a function of time 
because the applied shear flow will be of insufficient strength to prevent some of the particles that 
are being supplied in the feed from continuously settling out to form a stagnant sediment. The 
existence of such a critical feed concentration ¢~ is clearly seen in figure 5, where the dashed curve 
represents the loci of the point in the (6, ~) plane at which the particle concentration along the plate 
z = 0 first equals ¢0 = 0.58, the particle concentration of a settled bed. Although as it is turns out, 
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Figure 5. ThicKness 6 vs ¢~ for different values of ~. 
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Figure 6. The critical values of ~s and (6 - h t) vs ~ at the limit for steady film flow. 

solutions to the system of  equations given above still exist, for any given ~, beyond the dashed curve 
due to the particular form chosen for the effective viscosity/~r, [3], these solutions lack physical 
significance because they yield values for q~ at z = 0 which are larger than ~b 0 = 0.58. 

Figure 6 shows the dependence on ~ of  ~b*, the critical value of  ~bs, beyond which a steady 
solution to our model equations describing film flow does not exist, as well as the corresponding 
values of  ~ - h t ,  while the corresponding concentration profiles are depicted in figure 7. 

5. E X P E R I M E N T S  

A sketch of  the experimental apparatus is shown in figure 8. The test section consisted of  a 
rectangular duct with cross section 80 x l0 mm and length 1 m. The conduit had inlet ports for 
the sediment and the clear fluid, and an outlet port  for the suspension. The concentration ~b s of  
the negatively buoyant  particles (glass beads with radius a = 65 # m  and density P2 -- 2480 kg/m3; 
or polystyrene beads with radius a = 444 # m  and density P2 = 1054 kg/m 3) was measured by means 
of  a laser beam, a transparent cell and a photo diode, a technique which has been described 
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Figure 7. Particle concentration profiles in a film flow for various angles of inclination ~ when (~ equals 
its critical value ~s*. 
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Figure 8. Experimental setup. 

in more detail by Borhan (1989). Subsequently, the particles were separated from the fluid 
(water-glycerine mixture, p~ = 113 kg/m3; or water-ethyl alcohol mixture, p~ = 822 kg/m 3) within 
an inclined settler. Pump 2 conveyed the highly concentrated suspension into tank 2, from which 
a sediment with maximum concentration ~b0 was forced back into the resuspension conduit by 
means of an adjustable pressure (<  1 bar). Pump 3 returned the surplus of the clear fluid into the 
settler from which the purified liquid flowed into tank 1, where air bubbles could escape. Finally, 
by using pump 1, the clear fluid was made to flow through a manometer and to return into the 
resuspension conduit. 

By suitably setting the flow rate of the clear liquid and the pressure difference between tank 2 
and the resuspension conduit, it was found possible to achieve a steady equilibrium resuspension 
height within a short time. This height ht, as  well as the settled height h0 after a sudden shut down 
of all the flows, were measured at different locations by means of a cathetometer. 

Unfortunately, the appearance of instabilities within the rectangular duct limited the range 
of the experiments, Specifically, for glass beads suspended in a water-glycerine mixture, it was 
difficult to maintain a constant resuspended height within the duct if h0>0.3. In that case 
instabilities were noted and a certain portion of the cross section became completely blocked by 
sediment, with other areas totally free of particles. These observations provided the motivation for 
a linear spatial stability analysis which will be described in a subsequent paper (Schaflinger & 
Acrivos 1990). 

The experimental data for h0 as a function of ~: and ~s are compared with the theory in 
figure 4, and the corresponding comparison of the resuspension data is shown in figure 9. Evidently, 
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Figure 9. Resuspension data for a 80 x 10 mm rectangular duct. I1, polystyrene beads; measured settled 
height, 0.35 < h 0 < 0.45. O, glass beads, measured settled height, 0.12 < he < 0.17. The lines correspond 

to the respective theoretical calculations. 
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there is good agreement between the theory and the experiments, especially considering that the 
theory contained no adjustable parameters. 

6. CONCLUSIONS 

In most sediment transport problems, the flow is highly turbulent and viscous resuspension 
plays only a minor role, except in the viscous sublayer adjacent to the boundaries of the flow. 
Nevertheless, shear-induced particle diffusion and the resulting resuspension may be of importance 
in many laminar flows, such as in cross-flow microfiltration (Davis & Leighton 1987) and the 
sediment transport in inclined settlers. 

In the present paper, we investigated theoretically the viscous resuspension of negatively buoyant 
particles in a fully-developed 2-D Hagen-Poiseuille flow and in a corresponding plane, gravity- 
driven film flow. The theoretical approach was based on a model developed by Leighton & Acrivos 
(1986) in which the net downward flux of particles due to gravity is balanced by a diffusive flux 
caused by a shear-induced random motion of the particles. The model is free from adjustable 
parameters but does not take into account Brownian motion, which is negligible within the range 
of particle diameters investigated. It was shown that, in a 2-D Hagen-Poiseuille flow, resuspension 
is restricted due to the existence of a plane with vanishing shear stress. Moreover, for large values 
of Shields number, a constant concentration within the resuspended layer is reached and the 
velocity has its maximum at the interface. This fact is important in the linear stability analysis of 
the flow because the interracial mode becomes neutrally stable under these conditions (Yiantsios 
& Higgins 1988). The pressure-drop coefficient for a 2-D Hagen-Poiseuille flow was also calculated 
as a function of a modified Shields number and of the particle concentration in a well-mixed 
suspension far upstream at the entrance region of the duct. Also the settled height in such a flow 
was plotted as a function of the same parameters. 

For the film flow, the total thickness of the film was calculated as a function of ~bs, the fraction 
of solids in a well-mixed suspension, with the angle of inclination and the relative density difference 
between the solids and the fluid as parameters. It was found that there exists a critical value of 
~bs above which the particles will settle out and form a sediment layer at the bottom that will 
continue to grow as a function of time. 

Experiments performed in a 2-D Hagen-Poiseuille channel flow gave good agreement between 
the measurements and the theoretical predictions which contained no adjustable parameters. 
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